
CLEOPATRA

Building Responsive Systems from Physically-correct Speci�cations

Azer Bestavros
�

Department of Computer Science

Boston University
Boston, MA 02215

Abstract

Predictability { the ability to foretell that an implementation will not violate a
set of speci�ed reliability and timeliness requirements { is a crucial, highly desirable
property of responsive embedded systems. This paper overviews a development
methodology for responsive systems, which enhances predictability by eliminating
potential hazards resulting from physically-unsound speci�cations.

The backbone of our methodology is the Time-constrained Reactive Automaton
(TRA) formalism, which adopts a fundamental notion of space and time that restricts
expressiveness in a way that allows the speci�cation of only reactive, spontaneous,
and causal computation. Using the TRA model, unrealistic systems { possessing
properties such as clairvoyance, caprice, in�nite capacity, or perfect timing { cannot
even be speci�ed. We argue that this \ounce of prevention" at the speci�cation level
is likely to spare a lot of time and energy in the development cycle of responsive
systems { not to mention the elimination of potential hazards that would have gone,
otherwise, unnoticed.

The TRA model is presented to system developers through the CLEOPATRA
programming language. CLEOPATRA features a C-like imperative syntax for the
description of computation, which makes it easier to incorporate in applications al-
ready using C. It is event-driven, and thus appropriate for embedded process control
applications. It is object-oriented and compositional, thus advocating modularity
and reusability. CLEOPATRA is semantically sound; its objects can be transformed,
mechanically and unambiguously, into formal TRA automata for veri�cation pur-
poses, which can be pursued using model-checking or theorem proving techniques.
Since 1989, an ancestor of CLEOPATRA has been in use as a speci�cation and sim-
ulation language for embedded time-critical robotic processes.

�This research was partially conducted while the author was at Harvard University and was partially supported
by DARPA N00039-88-C-0163.

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1993 2. REPORT TYPE

3. DATES COVERED
 00-00-1993 to 00-00-1993

4. TITLE AND SUBTITLE
CLEOPATRA. Building Responsive Systems from Physically-correct
Specifications

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency,3701 North Fairfax
Drive,Arlington,VA,22203-1714

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

26

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1 Introduction

A computing system is embedded if it is a component of a larger system whose primary purpose

is to monitor and control an environment. The leaping advances in computing technologies that

the last few decades have witnessed have resulted in an explosion in the extent and variety of such

systems. This trend is expected to continue in the future.

Embedded systems are usually associated with critical applications, in which human lives

or expensive machinery are at stake. Their missions are often long-lived and uninterruptible,

making maintenance or recon�guration di�cult. Examples include command and control sys-

tems, nuclear reactors, process-control plants, robotics, avionics, switching circuits and telephony,

data-acquisition systems, and real-time databases, just to name a few. The sustained demands

of the environments in which such systems operate pose relatively rigid and urgent performance

requirements. These requirements are usually stated as timing constraints on their behaviors.

Wirth [Wirt77] singled out this processing-time dependency as the one aspect that di�erentiates

real-time from other sequential and parallel systems. This led to a body of research on real-

time computing, which encompasses issues of speci�cation techniques, validation and prototyp-

ing, formal veri�cation, safety analysis, programming languages, development tools, scheduling,

and operating systems. In addition to timeliness, embedded systems are also required to meet

stringent reliability constraints, which are usually stated as behavioral safety and liveness invari-

ants. For comprehensive surveys of recent research in real-time systems, the reader is directed to

[Stan88b, Burn90, Tilb91a, Tilb91b].

The absence of a uni�ed suitable formal framework that addresses the aforementioned issues

severely limits the usefulness of these studies. This situation is further exacerbated considering

the range of disciplines employed in developing the various components of an embedded applica-

tion. For example, in a simple sensori-motor robotic application [Clar91], algorithms from various

disciplines like low-level imaging, active vision, tactile sensing, path planning, compliant motion

control, and non-linear dynamics may be utilized [Fu87]. Not only are these disciplines di�erent

in their abstractions and programming styles, but also they di�er in their computational require-

ments, which range from single-board dedicated processors to massively parallel general-purpose

computers.

Current embedded systems are expensive to build and their properties are veri�ed with ad

hoc techniques[Stan88a]. Schneider [Schn88] portrays the situation aptly by saying that \Unlike

other engineering disciplines, our methods are not founded on science. Real-time systems are built

one way or another because that was the way the `last one' was built. And, since the `last one'

2

worked, we hope that the next one will". This brute force approach is not likely to scale-up with

future systems.

In this paper we propose CLEOPATRA,1 a programming environment that recognizes the

unique requirements of responsive embedded systems. CLEOPATRA features a C-like imperative syn-

tax for the description of computation, which makes it easier to incorporate in applications already

using C. It is event-driven, and thus appropriate for embedded process control applications. In par-

ticular, rather than describing behaviors using control structures, it describes behaviors using time-

constrained causal structures. CLEOPATRA is object-oriented and compositional, thus advocating

modularity and reusability. CLEOPATRA is semantically sound; its objects can be transformed,

mechanically and unambiguously, into formal automata for veri�cation purposes. Our experience

with CLEOPATRA con�rms its suitability as a vehicle for the speci�cation and validation of many

embedded and time-critical applications. In particular, we used it to simulate and analyze asyn-

chronous digital circuits, sensori-motor behavior of autonomous creatures, and intelligent controllers

[Best91a, Best90c, Best90b]. A compiler that allows the execution of CLEOPATRA speci�cations

has been developed [Best92], and is available via FTP from cs.bu.edu:/bestavros/cleopatra/.

CLEOPATRA is based on the Time-constrained Reactive Automata (TRA) formalism [Best91b,

Best91c]. Using the TRA formalism, an embedded system is viewed as a set of asynchronously inter-

acting automata (TRAs), each representing an autonomous system entity. TRAs are reactive in that

they abide by Lynch's input enabling property [Lync88b]; they communicate by signaling events

on their output channels and by reacting to events signaled on their input channels. The behav-

ior of a TRA is governed by time-constrained causal relationships between computation-triggering

events. The TRA model is compositional and allows only benign time, control, and computation

non-determinism. Using the TRA formalism, there is no conceptual distinction between a system

and a property; both are speci�ed as formal objects. This reduces the veri�cation process to that

of establishing correspondences { preservation and implementation { between such objects.

This paper is organized as follows. In Section 2, we overview the TRA model and highligh

its suitability for the speci�cation of embedded systems. In our overview, we emphasize the TRA

operational semantics, which underlies the execution model of CLEOPATRA. In Section 3, we

describe the CLEOPATRA speci�cation/programming language. In Section 4, we present a compiler

that allows the execution of CLEOPATRA speci�cations. In Section 5, we conclude with current and

future research directions.

1A C-based Language for the Event-driven Object-oriented Prototyping ofAsynchronous T ime-constrained Reactive

Automata.

3

2 The TRA Model

The TRA model has evolved from our earlier work in [Best90a] extending Lynch's IOA model

[Lync88b, Lync88a] to suit embedded and time-constrained computation.

2.1 Novelties

Previous studies in modeling real-time computing have focussed on adding the notion of time with-

out regard to physical properties of the modeled systems. This makes it possible to specify systems

that do not abide by principles like causality and spontaneity. Using the TRA model, requirements

that are physically impossible to guarantee are not possible to express. This preventative approach

is likely to spare a lot of time and energy in the development cycle (speci�cation, implementation,

and veri�cation) of responsive systems.

The TRA model deals not only with the notion of time, but also with the notion of space.

Events occur at uniquely identi�able points in time as well as in state space. Concurrent events are

permitted only if they a�ect disjoint state subspaces. The payo� for this dual treatment of space

and time is manifold. In particular, mappings between various levels of abstractions for compilation

and veri�cation purposes become more robust as the formalism becomes more structured.

The TRA model does not allow the speci�cation of systems that are not reactive. A system

is reactive if it cannot block the occurence of events not under its control. This property is cru-

cial for accurate and realistic modeling of embedded and real-time systems. A su�cient condition

for reactivity is the input enabling property proposed in [Lync88b]. The TRA model is input en-

abled. It distinguishes clearly between environment-controlled actions, which cannot be restricted

or constrained, and locally-controlled actions, which can be scheduled and disabled.

A non-deterministic system is causal if given two inputs that are identical up to any given

point in time, there exist outputs (for the respective inputs) that are also identical up to the same

point in time. The TRA model enforces causality by requiring that any locally-controlled actions

be produced only as a result of an earlier cause. In our work, a clear distinction is made between

causality and dependency. An event occurs as a result of exactly one earlier event but may depend

on many others as reected in the state of the system. This spares our formalism from dealing with

clairvoyant and capricious behaviors [Stua91].

Spontaneity is a notion closely related to causality.2 A system is spontaneous if its output

2Actually both spontaneity and causality are directly related to the past and future light cones of an event in

space-time [Hawk88].

4

actions at any given point in time t cannot depend on actions occuring at or after time t. In

particular, if an output occurs simultaneously with (say) an input transition, the same output could

have been produced without the simultaneous input transition [Sree90]. Simultaneity is, thus, a

mere coincidence; the output event could have occured spontaneously even if the input transition

was delayed. The TRA model enforces spontaneity by requiring that simultaneously occuring events

be independent; time has to necessarily advance to observe dependencies.

The TRA model distinguishes between two notions of time: real and perceived. Real time

cannot be measured by any single process in a given system; it is only observable by the environment.

Perceived time, on the other hand, can be speci�ed using uncertain time delays. The TRA model,

therefore, does not provide for (or allow the speci�cation of) any global or perfect clocks. As a

consequence, the only measure of time available for system processes has to be relative to imperfect,

local clocks. This distinction between real time and perceived time is important when dealing with

embedded applications where time properties are stated with respect to real time, but have to be

preserved relying on perceived time.

2.2 Basic de�nitions

We adopt a continuous model of time similar to that used in [Alur90, Lewi90]. We represent any

point in time by a nonnegative real t 2 <. Time intervals are de�ned by specifying their end-points

which are drawn from the set of nonnegative rationals Q � <. A time interval is viewed as a

traditional set over nonnegative real numbers. It can be an empty set, in which case it is denoted

by ", it can be a singleton set, in which case it is denoted by the [t; t], t 2 Q, or else it can be

an in�nite set, in which case it is denoted by [tl; tu], (tl; tu], [tl; tu), or (tl; tu) { the right-closed,

left-closed, and open time intervals, respectively, where tl; tu 2 Q and tl < tu. The set of all such

in�nite time intervals is denoted by D.

A real-time system is viewed as a set of interacting mealy automata called TRAs. TRAs commu-

nicate with each other through channels. A channel is an abstraction for an ideal unidirectional com-

munication. The information that a channel carries is called a signal, which consists of a sequence

of events. An event underscores the occurence of an action at a speci�c point in time. An action is

a value associated with a channel. For example, let North, South, East, and West be the possible

values that can be signaled on some channel MOVE of a given TRA. MOVE(East) is, therefore, a possi-

ble action of the TRA. The instantiation of MOVE(East) at time t1 denotes the occurence of an event

hMOVE(East) : t1i. The sequence of events hMOVE(East) : t1ihMOVE(North) : t2ihMOVE(South) : t3i

: : :etc. constitutes a signal. Signals are single valued; they cannot convey more than one event

simultaneously. That is, for a signal ha0 : t0iha1 : t1i : : :hak : tki : : : we require that tk < tk+1; k � 0.

5

At any point in time, a TRA is in a given state. The set of all such possible states de�nes

the TRA's state space. The state of a TRA is visible and can only be changed by local computations.

Computations (and thus state transitions) are triggered by actions and might be required to meet

speci�c timing constraints.

2.3 TRA Objects

De�nition 1 A TRA object is a sextuple (�; �0;�;�;�;�), where:

� �, the TRA signature, is the set of all the TRA channels. It is partitioned into three disjoint sets

of input, output, and internal channels, denoted by �in, �out, and �int, respectively. The set

consisting of both input and output channels is the set of external channels (�ext). These are

the only channels visible from outside the TRA. The set consisting of both output and internal

channels is the set of local channels (�loc). These are the locally controlled channels of the TRA.

� �0 2 �in is the start channel.

� �, the signaling range function, maps each channel in � to a possibly in�nite set of values that

can be signaled as actions on that channel. Action sets of di�erent channels are disjoint. The

set of all the actions of a TRA is given by �(�). The set of input, output, internal, external, and

local actions are similarly given by �(�in), �(�out), �(�int), �(�ext), and �(�loc), respectively.

� � is a possibly in�nite set of TRA states. The set � is expressed as the cross product of a �nite

number of subspaces � = �1 � �2 � : : :� �p, where p � 1 is the dimension of the state space.

� � � � � �(�)� � is a set of possible computational steps of the TRA. TRAs are input enabled

which means that for every � 2 �(�in), and for every � 2 �, there exists at least one step

(�; �; �0) 2 �, for some �0 2 �. Thus, � de�nes a total multifunction � : � ��(�in)! �.

� � � � � �loc � D � 2� is a set of time-constrained causal relationships (or simply time con-

straints) of the TRA. A time constraint �i 2 � is a quadruple (�i; �0
i; �i;�i) whose interpretation

is that: if an action is signaled at time t 2 < on the channel �i, then a corresponding action

must be �red on the channel �0
i at time t0, where t0� t 2 �i, provided that the TRA does not enter

any of the states in �i for the open interval (t; t0).3 The channel �i 2 � is called the trigger of

the time constraint, whereas �0
i 2 �loc is called the constrained channel. �i � � de�nes the set

of states that disable the time constraint; once triggered a time constraint becomes and remains

active until satis�ed or disabled. A time constraint is satis�ed by the �ring of an action on

the channel �i within the imposed time bounds; it is disabled if the TRA enters in one of the

disabling states in �i before it is satis�ed. The interval �i speci�es upper and lower bounds on

the delay between the triggering and satisfaction (or disabling) of the time constraint �i.

3Notice that this condition does not necessitate the existence of a computational step (�; �0; �0) 2 � for each

� 2 � � �i, where �0 2 �(�0) and �0 2 �, since the speci�cation of the TRA might avoid being in � when �0 is

scheduled to �re.

6

As an example of a TRA speci�cation, consider the the up/down counter whose state diagram

is shown in Figure 1. The counter accepts commands issued on the input channel cmd to count

up or down and signals the value of the current count (state) on the output channel cnt. The

counter starts its operation once an action is �red on the init channel. The value of the init

signal determines the starting state of the counter. The counter is constrained to produce a count

every at least 1:9 and at most 2:1 units of time, once it starts execution. Figure 1 shows the

TRA-speci�cation of such a counter.

The �rst three components of a TRA sextuple can be viewed as de�ning an interface between

the TRA object and its environment. In particular, to be able to use the counter of Figure 1, it su�ces

to know its external signature �in = finit; cmdg;�out = fcntg, the identity of the start channel

�0 = init, along with the signaling range of all the channels in �ext. The last three components

of a TRA sextuple are responsible for its behavior. The state space de�nes the spatial structure of

the computation. For the counter of Figure 1, this structure is unidimensionally spanned by the

single state variable �. The set of computational steps de�nes the e�ect of events on the state of

the TRA. The set of time-constrained causalities de�nes the rules governing the scheduling of the

TRA's local events. For the counter of Figure 1, there are two such rules.

SS S S0 1-1-2 S2

Cnt(0) Cnt(1) Cnt(2)Cnt(-1)Cnt(-2)

Cmd(D)

Cmd(U) Cmd(U)Cmd(U)

Cmd(D)Cmd(D) Cmd(D)

Cmd(U)

Init(0)Init(-1)Init(-2) Init(1) Init(2)

�� = �in [�out [�int, where:

�in = fcmd;initg, �out = fcntg, and �int = �.
�init 2 �in is the start channel.

��(init) = Z, �(cmd) = fUp; Downg, and �(cnt) = Z.

��, the set of states is given by: f�i : i 2 Zg.

�� = (
S

i;j2Z
f(�i;init(j); �j)g) [

(
S

i2Z
f(�i;cmd(UP); �i+1)g) [

(
S

i2Z
f(�i;cmd(Down); �i�1)g) [

(
S

i2Z
f(�i;cnt(i); �i)g).

�� = f(init;cnt; [1:9; 2:1];�); (cnt;cnt; [1:9; 2:1]; �)g.

Figure 1: TRA-speci�cation of up/down counter.

2.4 Space and Time aspects of TRAs

The behavior of a TRA is generally non-deterministic. Three sources of non-determinism can be

singled out. In a given state there might be a number of choices concerning the action to be �red.

Each one of these choices results in a di�erent computational step, and thus in a di�erent execution.

This gives rise to control non-determinism. The TRA timing constraints specify lower and upper

bounds on the delay between causes and e�ects, thus leaving the TRA with a potentially in�nite

7

number of choices concerning the exact delay to be exhibited. Each one of these choices results in a

di�erent event, and thus in a di�erent execution. This gives rise to timing nondeterminism. Finally,

the computation associated with speci�c actions might be non-deterministic. In this case, �ring

the same action from the same state might result in di�erent next states, and thus in di�erent

executions. This gives rise to computation non-determinism. Considered separately, each one

of the above forms of non-determinism is benign. A combination thereof, however, deserves a

closer attention. In particular, the interplay between control non-determinism and timing non-

determinism is interesting because it is related to the notions of space and time. Control non-

determinism refers to uncertainties about the identity of the channel that will be �red; it refers to

a spacial uncertainty. As such, and to abide by the spontaneity principle, it must reduce the range

of possible timing uncertainty.

To illustrate this point, consider a TRA, A, for which two possible steps are: (�i; �1; �j) and

(�i; �2; �k), where �j 6= �k. Furthermore, assume that A entered state �i at time t and that both

�1 and �2 are scheduled. Now, if the timing constraints for �1 and �2 are speci�ed such that both

actions can �re on di�erent channels at some later time t0, then \what will be the next state of A?

Will it be �j or �k or neither?" 4 The issue here is not whether the next state should be �j or �k.

Rather, the issue is whether or not such a situation should have been allowed in the �rst place.

Two computational steps conict if both of them introduce changes to at least one of the

subspaces of the TRA's state space. This is formally de�ned below.

De�nition 2 Two computational steps (�i; �i; �0i); (�j; �j ; �
0
j) 2 � conict if and only if for some

dimension k of �, �i[k] 6= �0i[k] and �j [k] 6= �0j [k], where 1 � k � n.

It is important to realize that the conict relationship depends not only on a TRA's computa-

tional behavior, but also on the structure of its state space. In particular, two TRAs with isomorphic

computational steps could have very di�erent conict relationships depending on their state space

characterizations. The notion of conicting computational steps can be easily extended to actions

and channels.

The conict relationship depicts computational dependencies that emerge due to sharing

information about state. For two local actions to conict, their respective channels must be under

the control of a single component of the TRA. The transitive closure of the conict relationship,

therefore, de�nes a partition on the locally-controlled channels of a given TRA.

De�nition 3 Two local channels �i and �j belongs to the same component (class) if they conict.

4The argument given here is made assuming that both �1 and �2 are locally-controlled actions. The same argument,

however, can be made if either �1 or �2, or both are input actions.

8

The partition into classes of the TRA's locally-controlled channels captures some of the struc-

ture of the system the automaton is modeling or the set of requirements it is specifying. In partic-

ular, each class of channels is intended to represent the set of channels locally-controlled by some

system component. This partitioning retains the basic control structure of the system's primitive

components and provides a concrete notion of spacial locality.

The actions on the input channels of a given TRA are not under its control; they can �re at

any time. To preserve the non-blocking (input-enabled) nature of the TRA model, it is, therefore,

necessary to insure that input actions on di�erent channels do not conict. A TRA is improper if

at least two of its input channels conict, otherwise it is proper. For the remainder of this paper,

it will be assumed that any TRA is proper unless otherwise stated.

The notion of system components we are presenting here is novel and entirely di�erent from

that used in untimed models to express fairness [Lync88b] by requiring that, in an in�nite execution,

each of the system's components gets in�nitely many chances to perform its locally-controlled

actions. In timed systems, the major concern is safe and not necessarily fair executions [Schn88].

Even if required, fairness can be enforced by treating it as a safety property; liveness properties

can be handled in in�nite execution by requiring time to grow unboundedly.5 . This led to the

abandoning of the idea of partitioning a system into components in our earlier model proposed in

[Best90a]. Lynch and Vaandrager [Lync91] followed suit in their recent modi�cation of the model

proposed in [Tutt88]. In the TRAmodel we use system components to represent what can be termed

as spacial locality. Di�erent actions can be signaled at the same \time" only if they are not signaled

from the same \place"; they can be produced at the same \place" only if they do not occur at the

same \time".6

2.5 TRA Executions and Behaviors

In standard automata theory, there is no distinction between choosing a transition and �ring it;

they constitute a unique, instantaneous, and atomic activity. In the TRAmodel a distinction is made

whereby choosing (scheduling) a transition and executing (committing) that transition are separate

activities. They are distinct in that they are separated in time. In fact, a scheduled transition does

not have to be committed; it can be abandoned due to unforseeable conditions. The distinction

between the two activities is also pronounced in the way the TRA model di�erentiates between input

and local events. Input events are not under the TRA's control; they cannot be blocked or delayed.

Local events are under the TRA's control; they are time constrained, and could be disabled.

5Such executions were called admissible in [Lync91]
6This intuition is inspired from physical systems, where events are characterized and distinguishable by their

time-space coordinates [Hawk88].

9

Consider the time constraint �i = (�i; �
0
i; �i;�i) 2 �. �i identi�es a time-constrained causal

relationship between the events signaled on �i and those signaled on �0
i. In particular, the occurence

of a triggering event on �i results in an intention to perform an action on �0
i within the time frame

imposed by �i. The commitment or abandonment of such an intention in due time is conditional

on the states assumed by the TRA from when the intention is posted until when it is committed

or abandoned. At any given point in time, a TRA might have several outstanding intentions. In

particular, the occurence of a single event might generate a number of intentions, each dictated by a

di�erent time constraint. Di�erent outstanding intentions are not necessarily imposed by di�erent

time constraints. In particular, the repeated occurence of a triggering event might generate a

number of outstanding intentions, all of which are posted by the same time constraint.

The state of a TRA at an arbitrary point in time is not su�cient to construct its future

behavior. In addition to the state, the intervals of time where scheduled transitions might �re (due

to earlier triggers) have to be recorded. For a given TRA, we de�ne the intention vector I = ~� to

be a vector of r sets of intentions, where r = j�j. Each entry in I is associated with one of the

TRA's time constraints. In particular, if �i = (�i; �
0
i; �i;�i) 2 � is one of the TRA's time constraints,

then I [�i] = f�i1; �i2; : : : ; �ik; : : : �img denotes a set of m time intervals during which actions on the

channel �0
i are intended to be �red as a result of earlier triggers on �i. Each one of the intervals in

�i can be thought of as an independent activation of the time constraint �i. An empty intentions

set, I [�i] = �, indicates the absence of any activations of �i. The empty intention vector, I�,

consists of r such empty sets.

De�nition 4 We de�ne the status of a TRA at any point in time t 2 < to be the tuple (�; I),

where � and I are the TRA's state and intention vector at time t, respectively.

A TRA changes its status only as a response to the occurence of an input or an intended local

event. In other words, the change in a TRA's status is necessarily a causal reaction to an input

event or to an earlier triggering event. Assume that the status (�; I) of a TRA was entered at time

t as a result of an event h� : ti, where � 2 �(�j); �0
j 2 �. Furthermore, assume that at time t0

(t0 � t), an action �0 2 �(�0
j) is �red, where �

0
j 2 �. As a result, the TRA will assume a new status

(�0; I 0). The status (�0; I 0) is called a successor of the status (�; I) due to the event h�0 : t0i. Five

conditions { namely, legality, spontaneity, safety, causality, and consistency { have to be met for

such a succession to occur.

De�nition 5 Assume that the status (�; I) of a TRA was entered at time t. Furthermore, assume

that at a later time t0 > t, a set of simultaneous actions �1 2 �(�1); �2 2 �(�2); : : : ; �m 2 �(�m)

were �red, where �j 2 �; 0 � j � m. As a result, the TRA will assume a new status (�0; I 0), where

I 0 = (I [I 0enabled)� (I 0�red [I 0disabled).

10

The status (�0; I 0) is called a valid successor of the status (�; I) due to the occurence of the set of

simultaneous events h�1; �2; : : : ; �m : t0i, if and only if the following conditions hold:

1. Spontaneity:

The channels �1; �2; : : : ; �m do not conict; they belong to di�erent TRA components.

2. Legality:

There exists some sequence of transitions (�; �1; �1); (�; �2; �2); : : :(�; �m; �m) 2 �, such that

�m = �0.

3 Safety:

For every intention �ik 2 I [�i], t00 2 �ik for some t00 > t0, t00 2 <, where �i 2 �.

4. Causality:

For all �i 2 �loc, the following conditions hold

a. If �i 6= �j for all 1 � j � m then for every �k = (�k; �0
k; �k;�k) 2 � for which �0

k = �i,

I 0�red[�k] = �.

b. Otherwise, let �i � � be the set of time constraint with �i as the constrained channel, then

there must exist exactly one time constraint �r 2 �i such that:

� I 0
�red

[�r] = f�rkg, where �rk 2 I [�r] and t0 2 �rk, and

� I 0�red[�k] = �, where �k 2 �i and �k 6= �r.

5. Consistency:

For every time constraint �k = (�k; �0
k; �k;�k) 2 �, the following conditions hold

a. If �0 2 �k, then

� I 0disabled[�k] = I [�k] and

� I 0enabled[�k] = �.

b. Otherwise

� I 0disabled[�k] = �, and

� If �k = �j for some 1 � j � m, then I 0
enabled

[�k] = f(t0 + �i)g, else I 0
enabled

[�k] = �.

In the above de�nition, the spontaneity condition allows the occurence of simultaneous events only if

they do not conict. This guarantees that the transition from � to �0 is independent of the ordering

of concurrent computational steps. The legality condition ensures that the state change from � to

�0 is the result of de�ned computational steps. The safety condition guarantees that no active time

constraint expires. In other words, outstanding intentions are either committed or abandoned in

due time. The causality condition necessitates that local events be causal; they are signaled only

if intended due to an earlier trigger. Thus, the causality condition guarantees that there is exactly

one committed intention per local event. In other words, every local event satis�es exactly one

intention. The consistency condition requires that the intentions in I continue to exist in I 0 unless

otherwise dictated by the occurence of the set of simultaneous events h�1 : t
0ih�2 : t

0i : : : h�m : t0i.

11

We use the notation (�; I) h�1;�2:::�m:t0i
7�! (�0; I 0) to denote the direct status succession from

(�; I) to (�0; I 0) due to the �ring of the set of simultaneous events h�1 : t
0i, h�2 : t

0i, : : :, h�m : t0i.

Furthermore, we use the notation (�; I) �
7�! (�0; I 0) to denote the extended status succession from

(�; I) to (�0; I 0) due to a number of direct status successions.

A TRA is said to have reached a stable status (�̂; Î), if all entries of the intention vector are

empty (Î = I�). A TRA remains in a stable status until excited by an input event. This follows

directly from the causality requirement for a status succession.

To start executing, a TRA (�; �0;�;�;�;�) is put in a stable initial status (�0; I0), where

I0 = I� and �0 2 �. The execution is initiated at time t0 with the �ring of an action �0 on

the start channel �0, where �0 2 �(�0). An execution e of a TRA is a possibly in�nite string of

alternating statuses and events, which starts with an initial status followed by an initiating event,

and which contains an in�nite number of status successions (in�nite execution), or terminates in a

stable status (�nite execution).

We follow an approach similar to that adopted in [Lync88b] by de�ning � to be a behavior

of a TRA A, if it consists of all the external events appearing in some execution e of A. We denote

the set of all the possible behaviors of a TRA A by behs(A). Obviously, behs(A) describes all the

possible interactions that the TRA A might be engaged in, and, therefore, constitutes a complete

speci�cation of the system that A models.

A TRA A is said to implement another TRA B if A does not produce any behavior that B could

have produced. In other words, all of A's behaviors (the implementation) are possible behaviors

of B (the speci�cation). The reverse, however, is not true. There might exist behaviors of B that

cannot be generated by A. The notion of a TRA implementing another is used mainly in veri�cation.

2.6 TRA Composition

A basic aspect of the TRA model is its capability to model a complex system by operating on simpler

system components. In this section we examine such an operation, namely composition. Other

operations (for example hiding and renaming) were presented in [Best91c].

The composition of a countable collection of compatible TRAs, fAi : i 2 Ig, is a new TRA A =

A0�A1� : : :�Ai� : : : = �i2IAi. The execution of A involves the execution of all its components

Ai2I , each starting from an initial status and observing every external event signaled by either the

environment (input) or by any TRA in the collection fAi : i 2 Ig. The compatibility condition for

composition insures that, for each channel in the composition, there is at most one writer, a �nite

number of readers, and that the signaling ranges of readers and writers are compatible.

12

The input signature of the composed TRA consists of those channels that are inputs to one or

more of the component TRAs, and which are not outputs of any of the component TRAs. The output

signature of the composed TRA consists of all the outputs of all the component TRAs. Similarily, the

internal signature of the composed TRA consists of all the internal channels of all the component

TRAs. The start channel of the composed TRA is the start channel of one or more of its component

TRAs.7 The signaling range function of the composed TRA is de�ned so as to preserve its input-

enabled property. In particular, the signaling range of an input channel consists of only those actions

that can accepted by all readers of that channel. A computational step of the composed TRA is

necessarily a step of one of its components. Similarily the time-constrained causal relationships of

the composed TRA are exactly those of the component TRAs.

In [Best91c], the formal construction of the sextuple representation of a composition is given.

Also, the relationships between the behaviors and spacial properties of the composed TRA and those

of its constituent TRAs are established. In particular, we prove that the sets of proper, spontaneous,

and causal TRAs are closed under composition.

The TRA composition operation is more general than those reported in [Lync88b, Tutt88,

Best90a] in that it allows the speci�cation of both parallel and sequential composition. In particular,

the introduction of the start channel permits the execution of two TRAs to be concurrent if they

share the same start channel, or to be serialized if the start channel of one (child) is an output of

the other (parent). Through appropriate composition, our model is capable of representing all of

the composition operations in [Lyon89].

3 CLEOPATRA: A TRA-based Speci�cation Language

In CLEOPATRA, systems are speci�ed as interconnections of TRA objects. Each TRA object has a

set of state variables and a set of channels. Time-constrained causal relationships between events

occuring on the di�erent channels, and the computations (state transitions) that they trigger, are

speci�ed using Time-constrained Event-driven Transactions (TETs). The behavior of a TRA object

is described using TETs. TRA objects can be composed together to specify more complex TRAs.

The correspondence between CLEOPATRA and the TRA formalism is straightforward. Every

object in CLEOPATRA corresponds to a TRA sextuple. In [Best91c], the construction of a TRA

sextuple, given a CLEOPATRA object, is detailed.

7Without loss of generality, we assume that TRA to be A0.

13

3.1 Classes and Objects

A TRA object speci�cation in CLEOPATRA consists of two components: a header and a body. An

object's header speci�es its name, the parameters needed for its instantiation, and its signature. An

object's body speci�es its behavior. In its simplest form, this entails the speci�cation of the TRA's

state space and its potentially time-constrained set of reactions to the di�erent events visible to it.

More complex behaviors include (among others) the speci�cation of: internal channels, initialization

code, and interconnection of local (composed) objects. Figure 2 shows a BNF-like description of a

TRA object in CLEOPATRA.

In CLEOPATRA, TRAs are de�ned in classes. For example, Figure 3 shows the CLEOPATRA

speci�cation of the class of integrators that use trapezoidal approximation.

<tra-object> := <tra-header> `{' <tra-body> `}'
<tra-header> := `TRA-class' <tra-name> {`(' <tra-params-spec> `)'} <signature>
<tra-params-spec> := {<type> <param-id> {`;' <tra-params-spec>}}
<signature> := {<ch-list-spec>} `->' {<ch-list-spec>}
<ch-list-spec> := <ch-id> (<type>) {`,' <ch-list-spec>}
<type> := `int' | `double' | `bool' | ...
<tra-body> := {<declarations>} {<init>} {<transactions>}
<declarations> := {<state>} {<internal>} {<included>}
<state> := `state:' <state-var-def>
<state-var-def> := <type> <var-list-def> `;' {<statevar-def>}
<var-list-def> := <var-id> {`=' <constant-exp>} {`,' <var-list-def>}
<internal> := `internal:' <signature>
<included> := `included:' <included-objects>
<included-objects> := <tra-instantiation> `;' {<included-objects>}
<tra-instantiation> := <tra-name> {`(' <actual-param-list> `)'} <ext-binding>
<actual-param-list> := <constant-exp> {`,' <actual-param-list>}
<ext-binding> := {<ch-list>} `->' {<ch-list>}
<ch-list> := <ch-id> {`,' <ch-list>}
<init> := <code>
<transactions> := {<xact> {<transactions>}}
<xact> := <xact-header> `:' <xact-body>
<xact-header> := {<trigger-list>} `->' <out-sig-spec>
<trigger-list> := <in-sig-spec> {`,' <trigger-list>}
<in-sig-spec> := <ch-id> `(' {<var-id>} `)'
<out-sig-spec> := <ch-id> `(' {<exp>} `)'
<xact-body> := <act> | `{' <acts> `}'
<acts> := <act> {<acts>}
<act> := <computation> | {<condframe>} <fire-acts> | {<timeframe>} <fire-acts>
<computation> := `commit' `{' <code> `}' | `do' `{' <code> `}'
<condframe> := `unless' `('<cond>`)' | `while' `('<cond>`)'
<timeframe> := <closed-timeframe> | <open-timeframe>
<closed-timeframe> := `within' `['<constant-exp>`~'<constant-exp>`]'
<open-timeframe> := `before' <constant-exp> | `after' <constant-exp>

Figure 2: Partial Syntax of a TRA speci�cation in CLEOPATRA

14

TRA-class integrate(double TICK, TICK_ERROR)
in(double) -> out(double)

{
state:
double x0 = 0, x1 = 0, y = 0;
act:
in(x1) -> :
;

init(),out() -> out(y):
within [TICK-TICK_ERROR~TICK+TICK_ERROR]

commit { y = y+TICK*(x0+x1)/2; x0 = x1; }
}

Figure 3: Speci�cation of the class of integrators that use the trapezoidal rule.

TRA classes are parametrized. For instance, the speci�cation of integrate given in Figure 4

includes the parameters TICK, and TICK ERROR, which have to be speci�ed before instantiating an

object from that class.

The header of a TRA class determines its external signature and signaling range function. For

example, any TRA from the class integrate speci�ed in Figure 3 has a signature consisting of an

input channel in and an output channel out. Both in and out carry actions whose values are

drawn from the set of reals. In CLEOPATRA, the start channel of any given TRA-class is called init.

Start channels do not have to be explicitly included in the header of a TRA-class. For example,

in the de�nition of the integrate TRA-class given in Figure 3, there is no mention of any init

channels in the external signature speci�ed in the header, yet, init is used later in the body of

integrate.

The body of a TRA class determines the behavior of objects from that class. Such a behavior

can be either basic or composite. The description of a basic behavior involves the speci�cation of a

state space in the state: section, the speci�cation of an initialization of that space in the init:

section, and the speci�cation of a set of Time-constrained Event-driven Transactions in the act:

section. The behavior of an object belonging to the TRA-class integrate shown in Figure 3 is an

example of a basic behavior. Composite behaviors, on the other hand, are speci�ed by composing

previously de�ned, simpler TRA-classes together in the include: section. For example, in Figure 4,

the class ramp is de�ned by composing the integrate and constant8 classes together.

8The behavior of an object from the constant class is to signal the value VAL on its only output channel out every

TICK � TICK ERROR units of time.

15

TRA-class ramp() -> y(double)
{
internal:
x(double) -> ;
include:
constant -> x() ;
integrate x() -> y() ;

}

Figure 4: CLEOPATRA speci�cation of a ramp generator.

3.2 Time-constrained Event-driven Transaction

In CLEOPATRA, the time-constrained causal relationships between events occuring on the di�erent

channels of a TRA-class, and the computations (state transitions) that they trigger, are speci�ed

using Time-constrained Event-driven Transactions (TET) A TET describes the reaction of a TRA

to a subset of events. Such a reaction might involve responding to triggers and/or �ring action(s).

Figure 5 explains the relation between the triggering and �ring of actions using TETs.

State

Disable?

Triggering
Channels

Constrained
 Channels

unless

Trigger Fire

within[Tmin~Tmax]

Figure 5: Time-constrained Event-driven Transaction (TET).

The description of a TET consists of two parts: a header and a body. The header of a TET

speci�es a set of triggering channels (trigger section) and a controlled channel (�re section). The

trigger section speci�es the e�ect of the triggering actions on the state of the TRA. In particular,

it speci�es at most one state variable (per triggering channel) where the value of a trigger on that

channel is to be recorded. A TET with no triggering section is triggered every time an action is

signaled on any channel of the TRA. In other words, its trigger set is considered to be the same

16

as the TRA's signature. The �re section speci�es the action value to be signaled on the controlled

channel as a result of �ring the TET. This value can be any expression on the state of the TRA. An

absent expression means that a random value from the signaling range of the controlled channel is

to be signaled. The body of a TET describes possible reactions to the TET triggers. Each reaction

is associated with a disabling condition, a time constraint, and a state transformation schema.

For example, the �rst TET of the integrate class shown in Figure 3 is an example of a

transaction with only a trigger section. Every time an action is signaled on the input channel in,

its value is stored in the state variable x1, thus, resulting in a potential input transition. The second

TET of the integrate class, on the other hand, is an example of a transaction with both a trigger

section and a �re section. In particular, every time an action is signaled on one of the triggering

channels (init or out) an output action is �red on out after a delay of TICK � TICK ERROR units

of time elapses.

Each reaction in the body of a TET is associated with three pieces of information: A disabling

condition, a time constraint, and a state transformation schema.

The disabling condition (unless clause) is a boolean expression (predicate) on the state of the

TRA.9 In order to be committed, a reaction's disabling condition has to remain false from when

the reaction is triggered until it commits. In other words, an intended reaction is aborted if at any

point in time after its triggering (scheduling), the disabling condition becomes true. The absence

of a disabling condition in a reaction implies that, once scheduled, it cannot be disabled.

The time constraint (within clause), determines a lower and upper bound for the real-time

delay between scheduling a reaction and committing it. Only constant expressions are allowed to

be used in the speci�cation of time bounds. Open, closed, and semi-closed time intervals can be

used provided they specify an interval of time from the set D.10 The absence of a time constraint

from a TET speci�cation implies that the causal relationship between the trigger and its e�ect is

unconstrained in time. A lower bound of 0 and an upper bound of 1 is assumed in such cases.

The state transformation schema (commit clause) speci�es a method for computing the next

state of the TRA once a reaction is committed. We adopt a C-like syntax for the speci�cation of

TET methods. Statements in a TET method are executed sequentially. The state transition caused

by the execution of a TET method is assumed to be atomic and instantaneous. An absent commit

clause implies that committing the reaction does not cause any state changes.

9No side e�ects are permitted in the evaluation of this condition.
10Current CLEOPATRA processors accept only dense intervals of three forms: (0; Tu), (Tl;1), or [Tl; Tu], where

Tu > Tl � 0. These are introduced using the before, after, and within clauses, respectively.

17

3.3 An Example

Figure 6 shows the speci�cation of a �nite FIFO element in CLEOPATRA. Values fed into the FIFO

element are delayed for some amount of time before being produced as outputs.

TRA-class fifo(int N)
in(float) -> out(float), overflow(), ack()

{
state:
float y[N];
int i, j;
bool f;
act:
init() -> ack():
before DLY_MIN
commit { i = 0; j = 0; f = FALSE; }

in(y[i]) -> ack():
before DLY_MIN
commit { i = (i+1)%N ; if (i==j) f = TRUE ; }

in() -> out(y[j]):
unless (f)
within [DLY_MIN~DLY_MAX]
commit { j = (j+1)%N ; }

in() -> overflow():
unless (!f)
within [DLY_MIN~DLY_MAX]
;

}

Figure 6: CLEOPATRA speci�cation of a �nite FIFO delay element.

The header of the fifo TRA-class identi�es the channel in as input, and the channels out,

ack and overflow as outputs. Although not explicitly speci�ed as such, the channel init (the start

channel) is assumed to be an input channel. The signaling range for channels in and out is the set

of oating point numbers, whereas the signaling range for channels ack and overflow consists of

only one value. The body of the fifo TRA-class contains two sections. In the state: section, the

state space of a fifo object is described by four state variables: a vector y[] of N oating point

values, two integer values i and j, and a boolean value f. In the act: section, the behavior of a

fifo object is described by four TETs, each of which underscores a causal relationship between

the events triggering its execution and those resulting from its execution.11

The �rst TET in the body of the FIFO establishes a causal relationship between events

signaled on init and and those signaled on ack. In particular, �ring an action on init (the

trigger) causes the �ring of an action on ack (the result) after a a delay of at most DLY MIN. The

11In other words, between input and output transitions.

18

second TET establishes a similar causal relationship between events signaled on in and ack. The

third TET establishes a causal relationship between events signaled on in and out. In particular,

�ring an action action on in causes the �ring of an action on out after a delay of at least DLY MIN

and at most DLY MAX elapses, provided that the FIFO did not overow as of the last initialization.

The causal relationship that the fourth TET establishes can be explained similarly.

Each TET in a TRA-class speci�es up to two possible state transitions. Consider, for example,

the second TET in the FIFO speci�cation given in Figure 6. In response to a trigger on in, the

value of the triggering signal is stored in the state variable y[i], thus resulting in a possible state

change. Notice that this transition cannot be blocked or delayed; it is an input transition. The

second state transition, an output transition, occurs with the �ring of an action on ack, resulting

in the adjustment of the values of the state variables i and f. Notice that the value of the action

signaled on a local (output or internal) channel does not reect the state change associated with it.

For instance, in the fourth TET of Figure 6, the value signaled on the out channel, namely y[j],

does not reect the changes introduced in the commit clause, namely advancing the pointer j.

3.4 Case and Point!

It is important to realize that fifo objects will behave as expected only if inputs from the environ-

ment meet certain conditions. In particular, the value of the index i is not incremented as a result

of an input on the channel in until at least DLY MIN units of time elapse following the signaling of

that input. It follows that an erroneous behavior will result if two or more events are signaled on

the channel in in a duration of time shorter than DLY MIN. To avoid such a malignant behavior,

the environment must wait for an acknowledgment ack()12 or else, must wait for at least DLY MIN

before signaling a new input. Such correctness (safety) conditions can be veri�ed using TRA-based

veri�cation techniques [Best91c].

We argue that any �nite implementation of a fifo object (discrete-event delay element)

must have a �nite capacity, which must not be exceeded for a correct behavior. Using CLEOPATRA,

it is impossible to specify a fifo class that behaves correctly independent of its environment's

behavior. This is a direct result of our abidance by the causality and spontaneity principles, which

are preserved by the TRA model. As we mentioned at the outset of this paper, it is our thesis that

preventing the speci�cation of physically-impossible objects is desired. At the least is spares system

developers from trying to implement the impossible.

12An ack() event is signaled when the previous input has been processed.

19

4 CLEOPATRA: A Simulation Language

We have developed a compiler that transforms CLEOPATRA speci�cations into an event-driven sim-

ulator for validation purposes. We have used the CLEOPATRA compiler to simulate a variety of

systems. In particular, we used it extensively to specify and analyze sensori-motor robotics appli-

cations [Best90c] and to simulate complex behaviors of autonomous creatures [Best91a]. Figure 7

shows the di�erent stages involved in the compilation and execution of speci�cations written in

CLEOPATRA.

.cleo

.cleo

.cleo

C
le

op
at

ra
 P

re
pr

oc
es

so
r

.cleo

.c

.h

.s

C
 C

om
pi

le
r

.h

.out

Specification Compilation Simulation

 System-defined
 TRA-classes, types,
debugging tools, ... etc.

Figure 7: Compilation and simulation of CLEOPATRA speci�cations.

At the heart of this process is a one-pass preprocessor, written in C, which parses user-

de�ned CLEOPATRA speci�cations, augmented with system-de�ned TRA classes,13 and generates an

13System-de�ned TRA classes are mainly for i/o and debugging purposes.

20

+
-

World

User Control Plant

Monitor Monitor

Main

x y z

Figure 8: A stand-alone process control system.

#include "sysTRA.cleo"

#define TAU 1
#define DLY 5

TRA-class user(double EPOCH)
-> x(double)

{
act:
init(),x() -> x(random(0,1)):

within [0.8*EPOCH~1.2*EPOCH]
;

}

TRA-class plant(double GAIN)
y(double) -> z(double)

{
state:
double drive = 0, val = 0 ;

act:
y(drive) -> :

;
init(), z() -> z(val):

within [0.9*DLY~1.1*DLY]
commit {
val = val + GAIN*drive ;

}
}

TRA-class world()
y(double) -> x(double), z(double)

{
include:
user(300) -> x() ;
plant(1.5) y() -> z() ;

}

TRA-class control()
x(double), z(double) -> y(double)

{
state:
double s = 0, f = 0;

act:
x(s), z(f) -> y(s-f):
within [0.95*TAU~1.05*TAU]
;

}

TRA-class main() ->
{
internal:
-> x(double),y(double),z(double)
include:
world y() -> x(), z() ;
control x(), z() -> y() ;
fmonitor("x.dat") x() -> ;
fmonitor("z.dat") z() -> ;

}

Figure 9: The main TRA-class.

21

equivalent C simulator. This C simulator consists of three components. The �rst is a header (.h)

�le, which includes type de�nitions for the state space of the various TRA classes in the speci�cation.

The second is a schema (.s) �le, which includes de�nitions for the state transition functions of the

various TETs. The third is the code (.c) �le, which includes the simulator initialization and control

structure along with the instantiation code for the various TRA classes, including main. The �nal

step of this process involves the invocation of the C compiler to produce an executable simulator.

Figure 10 illustrates a typical session, in which the CLEOPATRA compiler ccleo is invoked to process

the �le process-ctrl.cleo containing the speci�cation of the stand-alone process control system

shown in Figures 8 and 9.

In CLEOPATRA, any TRA-class with no input channels represents a stand-alone (closed) system

whose behavior is independent from the outside world; it is a world of its own. One such TRA-class,

namely main, is singled out by CLEOPATRA to represent the entire system being speci�ed. For

embedded systems, a typical main TRA-class will simply be the composition of a programmed

system, representing the control system, and an external interface, representing the environment.

For example, the main TRA-class shown in Figure 9 represents the CLEOPATRA speci�cation of

the closed process control system shown in Figure 8. The execution of a CLEOPATRA stand-alone

system is started by instantiating an object from the TRA-class main at time14 0 and, thereafter,

committing only the legal transitions dictated by the system speci�cation and the semantics of the

TRA model. Figure 11 shows the values signaled on the x and z channels over time.

A library of system-de�ned TRA-classes is available for debugging and performing I/O in

CLEOPATRA. For example, in the speci�cation of the TRA-class main given in Figure 9, the TRA-class

fmonitor is used to record the action values signaled on the x and z channels in �les x.dat and

z.dat respectively. System-de�ned TRA-classes are themselves speci�ed in CLEOPATRA. They are

di�erent from user-de�ned TRA-classes in that they have access to global information known only

to the simulator. For instance, fmonitor objects have access to the simulator's perfect clock, clk,

whereas user-de�ned TRA-classes have to maintain their own locally perceived clocks, if needed.

C functions can be called from within a CLEOPATRA speci�cation. To maintain the semantics

of the TRA formalism, however, only functions with no side e�ects should be used. In other words,

C function should be restricted to act as pure operations on the state variables of an object. It

should not reach beyond the boundaries of the state space of that object. Also, it should not alter

the structure of the state space of the object in any way. An example of the use of a C-function

is illustrated in the description of the user TRA-class of Figure 9 where the function random() is

called periodically to generate a random set value.

14The start time of the simulation can be explicitly speci�ed.

22

% ccleo process-ctrl
TRA-class fmonitor(string FILENAME)
init(unit), signal(double) -> ;

TRA-class user(double EPOCH)
init(unit) -> x(double) ;

TRA-class plant(double GAIN)
init(unit), y(double) -> z(double) ;

TRA-class world()
init(unit), y(double) -> x(double), z(double) ;

TRA-class control()
init(unit), x(double), z(double) -> y(double) ;

TRA-class main()
init(unit) -> `z(double)', `y(double)', `x(double)' ;

Cleopatra preprocessing completed.
C compilation completed.

% process-ctrl
CPU time = 1366612 usec # of events = 5486 SEPS = 4014.3069

Figure 10: A typical CLEOPATRA compilation and execution session.

Set Value (X) and System Response (Z) Signals

 Signal X

 Signal Z

Value

Time0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

0.00 0.20 0.40 0.60 0.80 1.00

Figure 11: Simulated behavior of an underdamped process control system.

23

Most of the C preprocessor utilities are available in CLEOPATRA. This includes simple and

parameterized macro de�nition and invocation, constant de�nition, and nested �le inclusion.15

For example, in the CLEOPATRA speci�cation of the stand-alone process control system shown in

Figure 9, system-de�ned TRA classes are included using the #include directive, and constants are

de�ned using the #define directive.

The simulator has proven to be quite e�cient. This is due primarily to the causal and

compositional nature of the TRA model, which tend to localize the computation triggered by the

occurrence of an event within the boundaries of few TETs. The number of simulated events per

second (seps) depends on a number of factors: the average channel fan-out, the average number of

TETs per TRA, and the complexity of the event-driven computation. It does not depend, however,

on the size of the state space or on the amount of TRA nesting. For an application with a fan-out

of 1 and an average of 2.4 TETs per TRA, and an O(1) event-driven computational complexity, the

compiled CLEOPATRA speci�cations executed at a rate of almost 19,500 seps.16 The performance

of a simulator for the same application hand coded directly in C performed only slightly better.

Namely, it executed at a rate of almost 20,000 seps. The performance of the simulator degrades

considerably when extensive I/O and tracing operations are performed.17

5 Conclusion

Predictability can be enhanced in a variety of ways. It can be enhanced by restricting expressive-

ness as was done in Real-Time Euclid [Klig86], by sacri�cing accuracy as was done in the Flex

system [Chun90], or by abstracting segmented resources as was done in the Spring kernel [Stan89].

The TRA-development methodology we are advocating here introduces one more way of improving

predictability, that of allowing only physically-sound speci�cations. Pursuing the ideas presented in

this paper will undoubtedly provide us with one more handle in our persistent quest for predictable

systems. An interesting question to be addressed in the future would be whether this and other

handles can be combined in any useful way to guarantee predictability.

Our experience with the TRA development methodology in the design, simulation, and anal-

ysis of asynchronous digital circuits, sensori-motor autonomous systems, and intelligent controllers

con�rms its suitability for the speci�cation, veri�cation, and validation of many embedded and time-

critical applications. Its usefulness in the implementation of such systems, although promising, is

15Current CLEOPATRA processors do not admit conditional compilation.
16All simulations were performed on a SPARCstation SLCTMworkstation.
17This is the case in the simulation shown in Figure 10, where an almost 5-fold decrease in e�ciency can be

attributed to the use of the fmonitor TRA-class.

24

yet to be established. An fruitful direction for future research would be to automate the process

of transforming TRA-based physically-sound time-critical speci�cations into provably-correct imple-

mentations given appropriate resources. Such research will have two complementary { experimental

and theoretical { components. The experimental component would involve the development of a

compiler to transform CLEOPATRA speci�cations into predictable real-time programs, given a ded-

icated computing platform. The theoretical component would aim at devising e�cient veri�cation

algorithms that can be automated and incorporated in the CLEOPATRA compiler.

References

[Alur90] Rajeev Alur, Costas Courcoubetis, and David Dill. \Model-checking for real-time systems." In
Proceedings of the 5th annual IEEE Symposium on Logic in Computer Science, Philadelphia,
Pensylvania, June 1990. IEEE Computer Society Press.

[Best90a] Azer Bestavros. \The IOTA: A model for real-time parallel computation." In Proceedings of
TAU'90: The 1990 ACM International Workshop on Timing issues in the Speci�cation and
Synthesis of Digital Systems, Vancouver, Canada, August 1990.

[Best90b] Azer Bestavros. \TRA-based real-time executable speci�cation using CLEOPATRA." In Pro-
ceedings of the 10th Annual Rochester Forth Conference on Embedded Systems, Rochester, NY,
June 1990. (revised May 1991).

[Best90c] Azer Bestavros, James Clark, and Nicola Ferrier. \Management of sensori-motor activity in
mobile robots." In Proceedings of the 1990 IEEE International Conference on Robotics &
Automation, Cincinati, Ohio, May 1990. IEEE Computer Society Press.

[Best91a] Azer Bestavros. \Planning for embedded systems: A real-time prospective." In Proceed-
ings of AIRTC-91: The 3rd IFAC Workshop on Arti�cial Intelligence in Real Time Control,
Napa/Sonoma Region, CA, September 1991.

[Best91b] Azer Bestavros. \Speci�cation and veri�cation or real-time embedded systems using the Time-
constrained Reactive Automata." In Proceedings of the 12th IEEE Real-time Systems Sympo-
sium, pages 244{253, San Antonio, Texas, December 1991.

[Best91c] Azer Bestavros. Time-constrained Reactive Automata: A novel development methodology for
embedded real-time systems. PhD thesis, Harvard University, Division of Applied Sciences (De-
partment of Computer Science), Cambridge, Massachusetts, September 1991.

[Best92] Azer Bestavros, Devora Reich, and Robert Popp. \Cleopatra compiler design and implementa-
tion." Technical Report TR-92-019, Computer Science Department, Boston University, Boston,
MA, August 1992.

[Burn90] Alan Burns and Andy Wellings. Real-time systems and their programming languages. Addison
Wesley Co. (International Computer Science Series), 1990.

[Chun90] Jen-Yao Chung, Jane Liu, and Kwei-Jay Lin. \Scheduling periodic jobs that allow imprecise
results." IEEE Transaction on Computers, 19(9):1156{1173, September 1990.

[Clar91] James Clark, Nicola Ferrier, and Lei Wang. \A robotics system for manipulation using directed
vision feedback." Internal report, Robotics laboratory, Harvard University, Cambridge, MA,
1991.

[Fu87] K. S. Fu, R. C. Gonzalez, and C. S. G. Lee. Robotics: Control, sensing, vision, and intelligence.
McGraw-Hill Book Company, 1987.

[Hawk88] Stephen W. Hawking. A brief history of Time: From the Big Bang to Black Holes. Bantam
Books, April 1988.

[Klig86] Eugene Kligerman and Alexander Stoyenko. \Real-time Euclid: A language for reliable real-time
systems." IEEE Transactions on Software Engineering, 12(9):941{949, September 1986.

25

[Lewi90] Harry Lewis. \A logic of concrete time intervals." In Proceedings of the 5th annual IEEE
Symposium on Logic in Computer Science, Philadelphia, PA, June 1990. IEEE Computer Society
Press.

[Lync88a] Nancy Lynch and Kenneth Goldman. \6.852 distributed algorithms lecture notes: The I/O
Automata." Technical report, Laboratory of Computer Science, MIT, Cambridge, MA, Fall
1988.

[Lync88b] Nancy Lynch and Mark Tuttle. \An introduction to Input/Output Automata." Technical
Report MIT/LCS/TM-373, MIT, Cambridge, Massachusetts, November 1988.

[Lync91] Nancy Lynch and Frits Vaandrager. \Forward and backward simulations for timing-based sys-
tems." Unpublished notes, Massachusetts Institute of Technology Laboratory for Computer
Science, August 1991.

[Lyon89] Damian Lyons and Michael Arbib. \A formal model of computation for sensory-based
robotics." IEEE Transactions on Robotics and Automation, 5(3):280{293, 1989.

[Schn88] Fred Schneider. \Critical (of) issues in real-time systems: A position paper." Technical Report
88-914, Department of Computer Science, Cornell University, Ithaca, NY, May 1988.

[Sree90] Ramavarapu Sreenivas. Towards a system theory for interconnected Condition/Event systems.
PhD thesis, Carnegie Mellon University, Pittsburgh, PA, September 1990.

[Stan88a] John Stankovic. \Misconceptions about real-time computing." IEEE Computer, October 1988.

[Stan88b] John Stankovic and Krithi Ramamritham, editors. Hard Real-Time Systems. IEEE Computer
Society Press, 1988.

[Stan89] John Stankovic and Krithi Ramamritham. \The Spring Kernel: A new paradigm for real-time
operating systems." ACM Operating Systems Review, 23(3):54{71, July 1989.

[Stua91] D.A. Stuart and P.C. Clements. \Clairvoyance, capricious timing faults, causality, and real-time
speci�cations." In Proceedings of the 12th IEEE Real-time Systems Symposium, pages 254{263,
San Antonio, Texas, December 1991.

[Tilb91a] Andr�e M. van Tilborg and Gary M. Koob, editors. Foundations of Real-Time Computing:
Formal Speci�cations and Methods. Kluwer Academic Publishers, 1991.

[Tilb91b] Andr�e M. van Tilborg and Gary M. Koob, editors. Foundations of Real-Time Computing:
Scheduling and resource management. Kluwer Academic Publishers, 1991.

[Tutt88] Mark Tuttle, Michael Meritt, and Francesmary Modugno. \Time constrained au-
tomata." MIT/LCS, November 1988.

[Wirt77] Niklaus Wirth. \Toward a discipline of real-time programming." Communications of the ACM,
20(8), August 1977.

26

